Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(4): e0175851, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28410436

RESUMO

Ocean acidification may affect zooplankton directly by decreasing in pH, as well as indirectly via trophic pathways, where changes in carbon availability or pH effects on primary producers may cascade up the food web thereby altering ecosystem functioning and community composition. Here, we present results from a mesocosm experiment carried out during 113 days in the Gullmar Fjord, Skagerrak coast of Sweden, studying plankton responses to predicted end-of-century pCO2 levels. We did not observe any pCO2 effect on the diversity of the mesozooplankton community, but a positive pCO2 effect on the total mesozooplankton abundance. Furthermore, we observed species-specific sensitivities to pCO2 in the two major groups in this experiment, copepods and hydromedusae. Also stage-specific pCO2 sensitivities were detected in copepods, with copepodites being the most responsive stage. Focusing on the most abundant species, Pseudocalanus acuspes, we observed that copepodites were significantly more abundant in the high-pCO2 treatment during most of the experiment, probably fuelled by phytoplankton community responses to high-pCO2 conditions. Physiological and reproductive output was analysed on P. acuspes females through two additional laboratory experiments, showing no pCO2 effect on females' condition nor on egg hatching. Overall, our results suggest that the Gullmar Fjord mesozooplankton community structure is not expected to change much under realistic end-of-century OA scenarios as used here. However, the positive pCO2 effect detected on mesozooplankton abundance could potentially affect biomass transfer to higher trophic levels in the future.


Assuntos
Água do Mar/química , Zooplâncton/fisiologia , Animais , Biodiversidade , Dióxido de Carbono/química , Copépodes/crescimento & desenvolvimento , Copépodes/fisiologia , Ecossistema , Feminino , Cadeia Alimentar , Concentração de Íons de Hidrogênio , Modelos Lineares , Oceanos e Mares , Óvulo/crescimento & desenvolvimento
2.
PLoS One ; 12(4): e0175808, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28445483

RESUMO

The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta). Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 µatm) and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.


Assuntos
Código de Barras de DNA Taxonômico , Plâncton/crescimento & desenvolvimento , Alveolados/genética , Alveolados/crescimento & desenvolvimento , Alveolados/metabolismo , Dióxido de Carbono/análise , Clorofila/análise , Clorofila A , Criptófitas/genética , Criptófitas/crescimento & desenvolvimento , Criptófitas/metabolismo , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Fungos/genética , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Concentração de Íons de Hidrogênio , Oceanos e Mares , Plâncton/genética , Plâncton/metabolismo , RNA Ribossômico 18S/química , RNA Ribossômico 18S/isolamento & purificação , RNA Ribossômico 18S/metabolismo , Análise de Sequência de DNA , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...